All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The MUSCIMA++ Dataset for Handwritten Optical Music Recognition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10372147" target="_blank" >RIV/00216208:11320/17:10372147 - isvavai.cz</a>

  • Result on the web

    <a href="http://doi.org/10.1109/ICDAR.2017.16" target="_blank" >http://doi.org/10.1109/ICDAR.2017.16</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICDAR.2017.16" target="_blank" >10.1109/ICDAR.2017.16</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The MUSCIMA++ Dataset for Handwritten Optical Music Recognition

  • Original language description

    Optical Music Recognition (OMR) promises to make accessible the content of large amounts of musical documents, an important component of cultural heritage. However, the field does not have an adequate dataset and ground truth for benchmarking OMR systems, which has been a major obstacle to measurable progress. Furthermore, machine learn- ing methods for OMR require training data. We design and collect MUSCIMA++, a new dataset for OMR. Ground truth in MUSCIMA++ is a notation graph, which our analysis shows to be a necessary and sufficient representation of music notation. Building on the CVC-MUSCIMA dataset for staffline removal, the MUSCIMA++ dataset v1.0 consists of 140 pages of hand- written music, with 91254 manually annotated notation symbols and 82247 explicitly marked relationships between symbol pairs. The dataset allows training and directly evaluating models for symbol classification, symbol localization, and notation graph assembly, and musical content extraction, both in isolation and joint

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    14th International Conference on Document Analysis and Recognition, ICDAR 2017, Kyoto, Japan, November 13 - 15, 2017

  • ISBN

    978-1-5386-3586-5

  • ISSN

    2379-2140

  • e-ISSN

    neuvedeno

  • Number of pages

    8

  • Pages from-to

    39-46

  • Publisher name

    IEEE Computer Society

  • Place of publication

    New York, USA

  • Event location

    Kyoto, Japan

  • Event date

    Nov 13, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article