Groundtruthing (not only) Music Notation with MUSCIMarker: a Practical Overview
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10372148" target="_blank" >RIV/00216208:11320/17:10372148 - isvavai.cz</a>
Result on the web
<a href="http://doi.org/10.1109/ICDAR.2017.271" target="_blank" >http://doi.org/10.1109/ICDAR.2017.271</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICDAR.2017.271" target="_blank" >10.1109/ICDAR.2017.271</a>
Alternative languages
Result language
angličtina
Original language name
Groundtruthing (not only) Music Notation with MUSCIMarker: a Practical Overview
Original language description
Dataset creation for graphics recognition, especially for hand-drawn inputs, is often an expensive and time-consuming undertaking. The MUSCIMarker tool used for creating the MUSCIMA++ dataset for Optical Music Recognition (OMR) led to efficient use of annotation resources, and it provides enough flexibility to be applicable to creating datasets for other graphics recognition tasks where the ground truth can be represented similarly. First, we describe the MUSCIMA++ ground truth to define the range of tasks for which using MUSCIMarker to annotate ground truth is applicable. We then describe the MUSCIMarker tool itself, discuss its strong and weak points, and share practical experience with the tool from creating the MUSCIMA++ dataset.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 12th IAPR International Workshop on Graphics Recognition
ISBN
978-1-5386-3586-5
ISSN
—
e-ISSN
neuvedeno
Number of pages
2
Pages from-to
47-48
Publisher name
IEEE Computer Society
Place of publication
New York, USA
Event location
Kyoto, Japan
Event date
Nov 9, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—