All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Groundtruthing (not only) Music Notation with MUSCIMarker: a Practical Overview

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10372148" target="_blank" >RIV/00216208:11320/17:10372148 - isvavai.cz</a>

  • Result on the web

    <a href="http://doi.org/10.1109/ICDAR.2017.271" target="_blank" >http://doi.org/10.1109/ICDAR.2017.271</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICDAR.2017.271" target="_blank" >10.1109/ICDAR.2017.271</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Groundtruthing (not only) Music Notation with MUSCIMarker: a Practical Overview

  • Original language description

    Dataset creation for graphics recognition, especially for hand-drawn inputs, is often an expensive and time-consuming undertaking. The MUSCIMarker tool used for creating the MUSCIMA++ dataset for Optical Music Recognition (OMR) led to efficient use of annotation resources, and it provides enough flexibility to be applicable to creating datasets for other graphics recognition tasks where the ground truth can be represented similarly. First, we describe the MUSCIMA++ ground truth to define the range of tasks for which using MUSCIMarker to annotate ground truth is applicable. We then describe the MUSCIMarker tool itself, discuss its strong and weak points, and share practical experience with the tool from creating the MUSCIMA++ dataset.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 12th IAPR International Workshop on Graphics Recognition

  • ISBN

    978-1-5386-3586-5

  • ISSN

  • e-ISSN

    neuvedeno

  • Number of pages

    2

  • Pages from-to

    47-48

  • Publisher name

    IEEE Computer Society

  • Place of publication

    New York, USA

  • Event location

    Kyoto, Japan

  • Event date

    Nov 9, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article