ICDAR2017 Robust Reading Challenge on COCO-Text
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00327992" target="_blank" >RIV/68407700:21230/18:00327992 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/ICDAR.2017.234" target="_blank" >http://dx.doi.org/10.1109/ICDAR.2017.234</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICDAR.2017.234" target="_blank" >10.1109/ICDAR.2017.234</a>
Alternative languages
Result language
angličtina
Original language name
ICDAR2017 Robust Reading Challenge on COCO-Text
Original language description
This report presents the final results of the ICDAR 2017 Robust Reading Challenge on COCO-Text. A challenge on scene text detection and recognition based on the largest real scene text dataset currently available: the COCO-Text dataset. The competition is structured around three tasks: Text Localization, Cropped Word Recognition and End-To-End Recognition. The competition received a total of 27 submissions over the different opened tasks. This report describes the datasets and the ground truth, details the performance evaluation protocols used and presents the final results along with a brief summary of the participating methods.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
14th IAPR International Conference on Document Analysis and Recognition (ICDAR)
ISBN
978-1-5386-3586-5
ISSN
—
e-ISSN
1520-5363
Number of pages
9
Pages from-to
1435-1443
Publisher name
IEEE Computer Society
Place of publication
Los Alamitos
Event location
Kyoto
Event date
Nov 9, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—