All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ICDAR2019 Robust Reading Challenge onMulti-lingual Scene Text Detection and Recognition– RRC-MLT-2019

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00337615" target="_blank" >RIV/68407700:21230/19:00337615 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/ICDAR.2019.00254" target="_blank" >http://dx.doi.org/10.1109/ICDAR.2019.00254</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICDAR.2019.00254" target="_blank" >10.1109/ICDAR.2019.00254</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ICDAR2019 Robust Reading Challenge onMulti-lingual Scene Text Detection and Recognition– RRC-MLT-2019

  • Original language description

    With the growing cosmopolitan culture of modern cities, the need of robust Multi-Lingual scene Text (MLT) detection and recognition systems has never been more immense.With the goal to systematically benchmark and push the state-of-the-art forward, the proposed competition builds on top of theRRC-MLT-2017 with an additional end-to-end task, an additional language in the real images dataset, a large scale multi-lingual synthetic dataset to assist the training, and a baseline End-to-End recognition method.The real dataset consists of 20,000 images containing text from 10 languages. The challenge has 4 tasks covering various aspects of multi-lingual scene text: (a) text detection, (b) cropped word script classification, (c) joint text detection and script classification and (d) end-to-end detection and recognition. In total, the competition received 60 submissions from the research and industrial communities. This paper presents the dataset, the tasks and the findings of the presented RRC-MLT-2019 challenge.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/TE01020415" target="_blank" >TE01020415: V3C - Visual Computing Competence Center</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ICDAR2019: Proceedings of the 15th IAPR International Conference on Document Analysis and Recognition

  • ISBN

    978-1-7281-3015-6

  • ISSN

    1520-5363

  • e-ISSN

    2379-2140

  • Number of pages

    6

  • Pages from-to

    1582-1587

  • Publisher name

    IEEE

  • Place of publication

    Piscataway, NJ

  • Event location

    Sydney

  • Event date

    Sep 20, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article