All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

E2E-MLT - An Unconstrained End-to-End Method for Multi-language Scene Text

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00337397" target="_blank" >RIV/68407700:21230/19:00337397 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-319-10602-1_26" target="_blank" >https://doi.org/10.1007/978-3-319-10602-1_26</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-21074-8_11" target="_blank" >10.1007/978-3-030-21074-8_11</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    E2E-MLT - An Unconstrained End-to-End Method for Multi-language Scene Text

  • Original language description

    An end-to-end trainable (fully differentiable) method for multi-language scene text localization and recognition is proposed. The approach is based on a single fully convolutional network (FCN) with shared layers for both tasks. E2E-MLT is the first published multi-language OCR for scene text. While trained in multi-language setup, E2E-MLT demonstrates competitive performance when compared to other methods trained for English scene text alone. The experiments show that obtaining accurate multi-language multi-script annotations is a challenging problem. Code and trained models are released publicly at https://github.com/MichalBusta/E2E-MLT.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ACCVW 2018: Proceedings of the 14th Asian Conference on Computer Vision Workshops

  • ISBN

    978-3-030-21073-1

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    17

  • Pages from-to

    127-143

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Perth

  • Event date

    Dec 4, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000492907100011