Curriculum Learning and Minibatch Bucketing in Neural Machine Translation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10372158" target="_blank" >RIV/00216208:11320/17:10372158 - isvavai.cz</a>
Result on the web
<a href="http://acl-bg.org/proceedings/2017/RANLP%202017/index.html" target="_blank" >http://acl-bg.org/proceedings/2017/RANLP%202017/index.html</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Curriculum Learning and Minibatch Bucketing in Neural Machine Translation
Original language description
We examine the effects of particular orderings of sentence pairs on the on-line training of neural machine translation (NMT). We focus on two types of such orderings: (1) ensuring that each minibatch contains sentences similar in some aspect and (2) gradual inclusion of some sentence types as the training progresses (so called "curriculum learning"). In our English-to-Czech experiments, the internal homogeneity of minibatches has no effect on the training but some of our "curricula" achieve a small improvement over the baseline.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LM2015071" target="_blank" >LM2015071: Language Research Infrastructure in the Czech Republic</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the International Conference Recent Advances in Natural Language Processing
ISBN
978-954-452-048-9
ISSN
1313-8502
e-ISSN
neuvedeno
Number of pages
8
Pages from-to
379-386
Publisher name
INCOMA Ltd.
Place of publication
Šumen, Bulgaria
Event location
Varna, Bulgaria
Event date
Sep 2, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—