All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Training Tips for the Transformer Model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10390090" target="_blank" >RIV/00216208:11320/18:10390090 - isvavai.cz</a>

  • Result on the web

    <a href="https://ufal.mff.cuni.cz/pbml/110/art-popel-bojar.pdf" target="_blank" >https://ufal.mff.cuni.cz/pbml/110/art-popel-bojar.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2478/pralin-2018-0002" target="_blank" >10.2478/pralin-2018-0002</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Training Tips for the Transformer Model

  • Original language description

    This article describes our experiments in neural machine translation using the recent Tensor2Tensor framework and the Transformer sequence-to-sequence model (Vaswani et al., 2017). We examine some of the critical parameters that affect the final translation quality, memory usage, training stability and training time, concluding each experiment with a set of recommendations for fellow researchers. In addition to confirming the general mantra &quot;more data and larger models&quot;, we address scaling to multiple GPUs and provide practical tips for improved training regarding batch size, learning rate, warmup steps, maximum sentence length and checkpoint averaging. We hope that our observations will allow others to get better results given their particular hardware and data constraints.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    The Prague Bulletin of Mathematical Linguistics

  • ISSN

    0032-6585

  • e-ISSN

  • Volume of the periodical

    110

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    28

  • Pages from-to

    43-70

  • UT code for WoS article

  • EID of the result in the Scopus database