CUNI Experiments for WMT17 Metrics Task
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10372161" target="_blank" >RIV/00216208:11320/17:10372161 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
CUNI Experiments for WMT17 Metrics Task
Original language description
In this report paper we propose three different methods for automatic evaluation of the machine translation (MT) quality. Two of the metrics are trainable on direct-assessment scores and two of them use dependency structures. The trainable metric AutoDA, which uses deep-syntactic features, achieved better correlation with humans compared e.g. to the chrF3 metric.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_013%2F0001781" target="_blank" >EF16_013/0001781: LINDAT/CLARIN - Research infrastructure for language technologies - extension of the repository and its computational power</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Second Conference on Machine Translation, Volume 2: Shared Task Papers
ISBN
978-1-945626-96-8
ISSN
—
e-ISSN
neuvedeno
Number of pages
8
Pages from-to
604-611
Publisher name
Association for Computational Linguistics
Place of publication
Stroudsburg, PA, USA
Event location
København, Denmark
Event date
Sep 7, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—