MonoTrans: Statistical Machine Translation from Monolingual Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10372173" target="_blank" >RIV/00216208:11320/17:10372173 - isvavai.cz</a>
Result on the web
<a href="http://ceur-ws.org/Vol-1885/201.pdf" target="_blank" >http://ceur-ws.org/Vol-1885/201.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
MonoTrans: Statistical Machine Translation from Monolingual Data
Original language description
We present MonoTrans, a statistical machine translation system which only uses monolingual source language and target language data, without using any parallel corpora or language-specific rules. It translates each source word by the most similar target word, according to a combination of a string similarity measure and a word frequency similarity measure. It is designed for translation between very close languages, such as Czech and Slovak or Danish and Norwegian. It provides a low-quality translation in resource-poor scenarios where parallel data, required for training a high-quality translation system, may be scarce or unavailable. This is useful e.g. for cross-lingual NLP, where a trained model may be transferred from a resource-rich source language to a resource-poor target language via machine translation. We evaluate MonoTrans both intrinsically, using BLEU, and extrinsically, applying it to cross-lingual tagger and parser transfer. Although it achieves low scores, it does surpass the baselines
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 17th conference ITAT 2017: Slovenskočeský NLP workshop (SloNLP 2017)
ISBN
978-1-974274-74-1
ISSN
1613-0073
e-ISSN
neuvedeno
Number of pages
8
Pages from-to
201-208
Publisher name
CreateSpace Independent Publishing Platform
Place of publication
Praha, Czechia
Event location
Martinské hole, Malá Fatra, Slovakia
Event date
Sep 23, 2017
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—