All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

"Wikily" Supervised Neural Translation Tailored to Cross-Lingual Tasks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10442253" target="_blank" >RIV/00216208:11320/21:10442253 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    "Wikily" Supervised Neural Translation Tailored to Cross-Lingual Tasks

  • Original language description

    We present a simple but effective approach for leveraging Wikipedia for neural machine translation as well as cross-lingual tasks of image captioning and dependency parsing without using any direct supervision from external parallel data or supervised models in the target language. We show that first sentences and titles of linked Wikipedia pages, as well as cross-lingual image captions, are strong signals for a seed parallel data to extract bilingual dictionaries and cross-lingual word embeddings for mining parallel text from Wikipedia. Our final model achieves high BLEU scores that are close to or sometimes higher than strong supervised baselines in low-resource languages; e.g. supervised BLEU of 4.0 versus 12.1 from our model in English-to-Kazakh. Moreover, we tailor our wikily translation models to unsupervised image captioning, and cross-lingual dependency parser transfer. In image captioning, we train a multi-tasking machine translation and image captioning pipeline for Arabic and English from which the Arabic training data is a wikily translation of the English captioning data. Our captioning results on Arabic are slightly better than that of its supervised model. In dependency parsing, we translate a large amount of monolingual text, and use it as an artificial training data in an annotation projection framework. We show that our model outperforms recent work on cross-lingual transfer of dependency parsers.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

  • ISBN

    978-1-955917-09-4

  • ISSN

  • e-ISSN

  • Number of pages

    16

  • Pages from-to

    1655-1670

  • Publisher name

    Association for Computational Linguistics

  • Place of publication

    Stroudsburg

  • Event location

    Punta Cana

  • Event date

    Nov 7, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article