Independent sets near the lower bound in bounded degree graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10385419" target="_blank" >RIV/00216208:11320/17:10385419 - isvavai.cz</a>
Result on the web
<a href="http://drops.dagstuhl.de/opus/volltexte/2017/7004" target="_blank" >http://drops.dagstuhl.de/opus/volltexte/2017/7004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.STACS.2017.28" target="_blank" >10.4230/LIPIcs.STACS.2017.28</a>
Alternative languages
Result language
angličtina
Original language name
Independent sets near the lower bound in bounded degree graphs
Original language description
By Brook's Theorem, every n-vertex graph of maximum degree at most Delta >= 3 and clique number at most Delta is Delta-colorable, and thus it has an independent set of size at least n/Delta. We give an approximate characterization of graphs with independence number close to this bound, and use it to show that the problem of deciding whether such a graph has an independent set of size at least n/Delta+k has a kernel of size O(k).
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)
ISBN
978-3-95977-028-6
ISSN
1868-8969
e-ISSN
neuvedeno
Number of pages
13
Pages from-to
1-13
Publisher name
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Place of publication
Dagstuhl, Germany
Event location
Hannover, Germany
Event date
Mar 8, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—