All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Self-weighted recursive estimation of GARCH models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10382855" target="_blank" >RIV/00216208:11320/18:10382855 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1080/03610918.2015.1053924" target="_blank" >https://doi.org/10.1080/03610918.2015.1053924</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/03610918.2015.1053924" target="_blank" >10.1080/03610918.2015.1053924</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Self-weighted recursive estimation of GARCH models

  • Original language description

    The generalized autoregressive conditional heteroscedasticity (GARCH) processes are frequently used to investigate and model financial returns. They are routinely estimated by computationally complex off-line estimation methods, for example, by the conditional maximum likelihood procedure. However, in many empirical applications (especially in the context of high-frequency financial data), it seems necessary to apply numerically more effective techniques to calibrate and monitor such models. The aims of this contribution are: (i)to review the previously introduced recursive estimation algorithms and to derive self-weighted alternatives applying general recursive identification instruments, and (ii)to examine these methods by means of simulations and an empirical application.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GBP402%2F12%2FG097" target="_blank" >GBP402/12/G097: DYME-Dynamic Models in Economics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communications in Statistics Part B: Simulation and Computation

  • ISSN

    0361-0918

  • e-ISSN

  • Volume of the periodical

    47

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    315-328

  • UT code for WoS article

    000424159000001

  • EID of the result in the Scopus database

    2-s2.0-85038364267