Torsion classes generated by silting modules
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10383193" target="_blank" >RIV/00216208:11320/18:10383193 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4310/ARKIV.2018.v56.n1.a2" target="_blank" >https://doi.org/10.4310/ARKIV.2018.v56.n1.a2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4310/ARKIV.2018.v56.n1.a2" target="_blank" >10.4310/ARKIV.2018.v56.n1.a2</a>
Alternative languages
Result language
angličtina
Original language name
Torsion classes generated by silting modules
Original language description
We study the classes of modules which are generated by a silting module. In the case of either hereditary or perfect rings, it is proved that these are exactly the torsion T such that the regular module has a special T -preenvelope. In particular, every torsion-enveloping class in Mod-R are of the form Gen(T) for a minimal silting module T. For the dual case, we obtain for general rings that the covering torsion-free classes of modules are exactly the classes of the form Cogen(T), where T is a cosilting module.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Arkiv for Matematik
ISSN
0004-2080
e-ISSN
—
Volume of the periodical
56
Issue of the periodical within the volume
1
Country of publishing house
SE - SWEDEN
Number of pages
18
Pages from-to
15-32
UT code for WoS article
000431280900002
EID of the result in the Scopus database
2-s2.0-85049749309