All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tilting theory via stable homotopy theory

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10383383" target="_blank" >RIV/00216208:11320/18:10383383 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1515/crelle-2015-0092" target="_blank" >https://doi.org/10.1515/crelle-2015-0092</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/crelle-2015-0092" target="_blank" >10.1515/crelle-2015-0092</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tilting theory via stable homotopy theory

  • Original language description

    We show that certain tilting results for quivers are formal consequences of stability, and as such are part of a formal calculus available in any abstract stable homotopy theory. Thus these results are for example valid over arbitrary ground rings, for quasi-coherent modules on schemes, in the differential-graded context, in stable homotopy theory and also in the equivariant, motivic or parametrized variant thereof. In further work, we will continue developing this calculus and obtain additional abstract tilting results. Here, we also deduce an additional characterization of stability, based on Goodwillie&apos;s strongly (co) cartesian n-cubes. As applications we construct abstract Auslander-Reiten translations and abstract Serre functors for the trivalent source and verify the relative fractionally Calabi-Yau property. This is used to offer a new perspective on May&apos;s axioms for monoidal, triangulated categories.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal für die Reine und Angewandte Mathematik

  • ISSN

    0075-4102

  • e-ISSN

  • Volume of the periodical

    743

  • Issue of the periodical within the volume

    2018

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    62

  • Pages from-to

    29-90

  • UT code for WoS article

    000445860300002

  • EID of the result in the Scopus database

    2-s2.0-85044770565