On Boolean ranges of Banaschewski functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10383773" target="_blank" >RIV/00216208:11320/18:10383773 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00012-018-0489-9" target="_blank" >https://doi.org/10.1007/s00012-018-0489-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00012-018-0489-9" target="_blank" >10.1007/s00012-018-0489-9</a>
Alternative languages
Result language
angličtina
Original language name
On Boolean ranges of Banaschewski functions
Original language description
We construct a countable lattice S isomorphic to a bounded sublattice of the subspace lattice of a vector space with two non-isomorphic maximal Boolean sublattices. We represent one of them as the range of a Banaschewski function and we prove that this is not the case of the other. Hereby we solve a problem of F. Wehrung. We study coordinatizability of the lattice S. We prove that although it does not contain a 3-frame, the lattice S is coordinatizable. We show that the two maximal Boolean sublattices correspond to maximal Abelian regular subalgebras of the coordinatizating ring.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA14-15479S" target="_blank" >GA14-15479S: Representation Theory (Structural Decompositions and Their Constraints)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Algebra Universalis
ISSN
0002-5240
e-ISSN
—
Volume of the periodical
79
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
23
Pages from-to
—
UT code for WoS article
000429976600002
EID of the result in the Scopus database
2-s2.0-85045405229