All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Some aspects of (non) functoriality of natural discrete covers of locales

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10404837" target="_blank" >RIV/00216208:11320/19:10404837 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Ry4zcocarU" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Ry4zcocarU</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2989/16073606.2018.1485756" target="_blank" >10.2989/16073606.2018.1485756</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Some aspects of (non) functoriality of natural discrete covers of locales

  • Original language description

    The frame S-c(L) generated by closed sublocales of a locale L is known to be a natural Boolean (&quot;discrete&quot;) extension of a subfit L; also it is known to be its maximal essential extension. In this paper we first show that it is an essential extension of any L and that the maximal essential extensions of L and S-c(L) are isomorphic. The construction S-c is not functorial; this leads to the question of individual liftings of homomorphisms L -&gt; M to homomorphisms S-c(L) -&gt; S-c(M). This is trivial for Boolean L and easy for a wide class of spatial L, M . Then, we show that one can lift all h : L -&gt; 2 for weakly Hausdorff L (and hence the spectra of L and S-c(L) are naturally isomorphic), and finally present liftings of h : L -&gt; M for regular L and arbitrary Boolean M.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Quaestiones Mathematicae

  • ISSN

    1607-3606

  • e-ISSN

  • Volume of the periodical

    42

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    ZA - SOUTH AFRICA

  • Number of pages

    15

  • Pages from-to

    701-715

  • UT code for WoS article

    000478889000001

  • EID of the result in the Scopus database

    2-s2.0-85052084297