Maximal essential extensions in the context of frames
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386932" target="_blank" >RIV/00216208:11320/18:10386932 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00012-018-0508-x" target="_blank" >https://doi.org/10.1007/s00012-018-0508-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00012-018-0508-x" target="_blank" >10.1007/s00012-018-0508-x</a>
Alternative languages
Result language
angličtina
Original language name
Maximal essential extensions in the context of frames
Original language description
We show that every frame can be essentially embedded in a Boolean frame, and that this embedding is the maximal essential extension of the frame in the sense that it factors uniquely through any other essential extension. This extension can be realized as the embedding L -> N(L) -> BN(L), where L -> N(L) is the familiar embedding of L into its congruence frame N(L), and N(L) -> BN(L) is the Booleanization of N(L). Finally, we show that for subfit frames the extension can also be realized as the embedding L -> S-c(L) of L into its complete Boolean algebra S-c(L) of sublocales which are joins of closed sublocales.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Algebra Universalis
ISSN
0002-5240
e-ISSN
—
Volume of the periodical
79
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
13
Pages from-to
—
UT code for WoS article
000431737200014
EID of the result in the Scopus database
2-s2.0-85045988606