GAUSSIAN APPROXIMATION FOR FUNCTIONALS OF GIBBS PARTICLE PROCESSES
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384116" target="_blank" >RIV/00216208:11320/18:10384116 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.14736/kyb-2018-4-0765" target="_blank" >https://doi.org/10.14736/kyb-2018-4-0765</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14736/kyb-2018-4-0765" target="_blank" >10.14736/kyb-2018-4-0765</a>
Alternative languages
Result language
angličtina
Original language name
GAUSSIAN APPROXIMATION FOR FUNCTIONALS OF GIBBS PARTICLE PROCESSES
Original language description
In the paper asymptotic properties of functionals of stationary Gibbs particle processes are derived. Two known techniques from the point process theory in the Euclidean space R-d are extended to the space of compact sets on R-d equipped with the Hausdorff metric. First, conditions for the existence of the stationary Gibbs point process with given conditional intensity have been simplified recently. Secondly, the Malliavin-Stein method was applied to the estimation of Wasserstein distance between the Gibbs input and standard Gaussian distribution. We transform these theories to the space of compact sets and use them to derive a Gaussian approximation for functionals of a planar Gibbs segment process.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GA16-03708S" target="_blank" >GA16-03708S: Spatial geometrical statistics of random sets in Euclidean spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Kybernetika
ISSN
0023-5954
e-ISSN
—
Volume of the periodical
54
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
13
Pages from-to
765-777
UT code for WoS article
000449579800008
EID of the result in the Scopus database
2-s2.0-85056176390