Nonlinear Elastic Free Energies and Gradient Young-Gibbs Measures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11620%2F14%3A10285692" target="_blank" >RIV/00216208:11620/14:10285692 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00220-014-1903-6" target="_blank" >http://dx.doi.org/10.1007/s00220-014-1903-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00220-014-1903-6" target="_blank" >10.1007/s00220-014-1903-6</a>
Alternative languages
Result language
angličtina
Original language name
Nonlinear Elastic Free Energies and Gradient Young-Gibbs Measures
Original language description
We investigate, in a fairly general setting, the limit of large volume equilibrium Gibbs measures for elasticity type Hamiltonians with clamped boundary conditions. The existence of a quasiconvex free energy, forming the large deviations rate functional,is shown using a new interpolation lemma for partition functions. The local behaviour of the Gibbs measures can be parametrized by Young measures on the space of gradient Gibbs measures. In view of the unboundedness of the state space, the crucial toolhere is an exponential tightness estimate that holds for a vast class of potentials and the construction of suitable compact sets of gradient Gibbs measures.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F12%2F2613" target="_blank" >GAP201/12/2613: Threshold phenomena in stochastic systems</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Mathematical Physics
ISSN
0010-3616
e-ISSN
—
Volume of the periodical
326
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
21
Pages from-to
887-917
UT code for WoS article
000332656700010
EID of the result in the Scopus database
—