All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bootstrapping Nonparametric M-Smoothers with Independent Error Terms

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384378" target="_blank" >RIV/00216208:11320/18:10384378 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-319-96941-1" target="_blank" >https://doi.org/10.1007/978-3-319-96941-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-96941-1" target="_blank" >10.1007/978-3-319-96941-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bootstrapping Nonparametric M-Smoothers with Independent Error Terms

  • Original language description

    Nonparametric regression approaches are flexible modeling tools in mod- ern statistics. On the other hand, the lack of any parameters makes these approaches more challenging when assessing some statistical inference in these models. This is crucial especially in situations when one needs to perform some statistical tests or to construct some confidence sets. In such cases, it is common to use a bootstrap ap- proximation instead. It is an effective alternative to more straightforward but rather slow plug-in techniques. In this paper we introduce a proper bootstrap algorithm for a robustified versions of the nonparametric estimates, so called M-smoothers, or M-estimates respectively. We distinguish situations for homoscedastic and het- eroscedastic independent error terms and we prove the consistency of the bootstrap approximation under both scenarios. Technical proofs are provided and the finite sample properties are investigated via a simulation study.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GBP402%2F12%2FG097" target="_blank" >GBP402/12/G097: DYME-Dynamic Models in Economics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Nonparametric Statistics - 3rd ISNPS, Avignon, France, June 2016

  • ISBN

    978-3-319-96940-4

  • Number of pages of the result

    15

  • Pages from-to

    1-15

  • Number of pages of the book

    352

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Springer Nature Switzerland AG

  • UT code for WoS chapter