Influence of atmospheric pressure dielectric barrier discharge on wettability and drying of poly(ether-ether-ketone) foils
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10385317" target="_blank" >RIV/00216208:11320/18:10385317 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.polymdegradstab.2018.02.016" target="_blank" >https://doi.org/10.1016/j.polymdegradstab.2018.02.016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.polymdegradstab.2018.02.016" target="_blank" >10.1016/j.polymdegradstab.2018.02.016</a>
Alternative languages
Result language
angličtina
Original language name
Influence of atmospheric pressure dielectric barrier discharge on wettability and drying of poly(ether-ether-ketone) foils
Original language description
Wettability and water droplet drying dynamics on poly(ether-ether-ketone) (PEEK) foils treated by atmospheric pressure air dielectric barrier discharge (DBD) has been investigated. It has been found that plasma treatment causes significant increase of PEEK wettability that is predominantly connected with alterations of its chemical composition (oxidation) induced by DBD plasma. The hydrophilization of PEEK surface was not temporally stable and substantial increase of water contact angle up to 67 degrees was observed with increasing storage time, which is consistent with loosening of polar groups as confirmed by means of XPS. Characteristic restoration time of the contact angle was 6.7 days. Furthermore, a large alteration of the dynamics of water droplets drying on PEEK after the plasma treatment was also observed: whereas for untreated PEEK three drying phases were clearly distinguishable, the phase of constant contact angle disappeared in the case of PEEK exposed to the atmospheric pressure air plasma. In spite of substantial decrease of PEEK wettability with storage time the constant angle phase didn't appear within 51 days after the plasma treatment. As a result of this plasma treated and aged PEEK exhibits much higher water contact hysteresis as compared to untreated PEEK. This effect may be explained by the formation of randomly distributed nanostructures on PEEK surface exposed to DBD plasma that increase the spatial heterogeneity of the PEEK surface and enhance droplet pinning during its drying.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Polymer Degradation and Stability
ISSN
0141-3910
e-ISSN
—
Volume of the periodical
150
Issue of the periodical within the volume
April
Country of publishing house
GB - UNITED KINGDOM
Number of pages
8
Pages from-to
114-121
UT code for WoS article
000430773100013
EID of the result in the Scopus database
2-s2.0-85042686575