All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Structure and generation of crossing-critical graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10385421" target="_blank" >RIV/00216208:11320/18:10385421 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14330/18:00101458

  • Result on the web

    <a href="http://drops.dagstuhl.de/opus/volltexte/2018/8746" target="_blank" >http://drops.dagstuhl.de/opus/volltexte/2018/8746</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.33" target="_blank" >10.4230/LIPIcs.SoCG.2018.33</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Structure and generation of crossing-critical graphs

  • Original language description

    We study c-crossing-critical graphs, which are the minimal graphs that require at least c edge-crossings when drawn in the plane. For c=1 there are only two such graphs without degree-2 vertices, K_5 and K_{3,3}, but for any fixed c&gt;1 there exist infinitely many c-crossing-critical graphs. It has been previously shown that c-crossing-critical graphs have bounded path-width and contain only a bounded number of internally disjoint paths between any two vertices. We expand on these results, providing a more detailed description of the structure of crossing-critical graphs. On the way towards this description, we prove a new structural characterisation of plane graphs of bounded path-width. Then we show that every c-crossing-critical graph can be obtained from a c-crossing-critical graph of bounded size by replicating bounded-size parts that already appear in narrow &quot;bands&quot; or &quot;fans&quot; in the graph. This also gives an algorithm to generate all the c-crossing-critical graphs of at most given order n in polynomial time per each generated graph.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    34th International Symposium on Computational Geometry (SoCG 2018)

  • ISBN

    978-3-95977-066-8

  • ISSN

    1868-8969

  • e-ISSN

    neuvedeno

  • Number of pages

    14

  • Pages from-to

    1-14

  • Publisher name

    Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik

  • Place of publication

    Dagstuhl, Germany

  • Event location

    Budapest, Hungary

  • Event date

    Jun 11, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article