Stokes system with solution -dependent slip boundary conditions: Analysis, approximation and implementation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386677" target="_blank" >RIV/00216208:11320/18:10386677 - isvavai.cz</a>
Result on the web
<a href="https://journals.sagepub.com/doi/full/10.1177/1081286517716222" target="_blank" >https://journals.sagepub.com/doi/full/10.1177/1081286517716222</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/1081286517716222" target="_blank" >10.1177/1081286517716222</a>
Alternative languages
Result language
angličtina
Original language name
Stokes system with solution -dependent slip boundary conditions: Analysis, approximation and implementation
Original language description
The paper deals with the approximation, convergence analysis and implementation of the Stokes system with threshold slip boundary conditions of Navier type. Based on the fixed-point formulation we prove the existence of a solution for a class of solution-dependent slip functions g satisfying an appropriate growth condition and its uniqueness provided that g is one-sided Lipschitz continuous. Further we study under which conditions the respective fixed-point mapping is contractive. To discretize the problem we use P1-bubble/P1 elements. Properties of discrete models in dependence on the discretization parameter are analysed and convergence results are established. In the second part of the paper we briefly describe the duality approach used in computations and present results of a model example.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-01747S" target="_blank" >GA17-01747S: Theory and numerical analysis of coupled problems in fluid dynamics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics and Mechanics of Solids
ISSN
1081-2865
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
294-307
UT code for WoS article
000429895300004
EID of the result in the Scopus database
2-s2.0-85044166501