Stokes system with solution-dependent threshold slip boundary conditions: Analysis, approximation and implementation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F18%3A00495385" target="_blank" >RIV/68145535:_____/18:00495385 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27230/18:10240517 RIV/61989100:27740/18:10240517 RIV/00216305:26230/18:PU127477
Result on the web
<a href="http://journals.sagepub.com/doi/abs/10.1177/1081286517716222" target="_blank" >http://journals.sagepub.com/doi/abs/10.1177/1081286517716222</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/1081286517716222" target="_blank" >10.1177/1081286517716222</a>
Alternative languages
Result language
angličtina
Original language name
Stokes system with solution-dependent threshold slip boundary conditions: Analysis, approximation and implementation
Original language description
The paper analyzes the Stokes system with threshold slip boundary conditions of Navier type. Based on the fixed-point formulation we prove the existence of a solution for a class of solution-dependent slip functions g satisfying an appropriate growth condition and its uniqueness provided that g is one-sided Lipschitz continuous. Further we study under which conditions the respective fixed-point mapping is contractive. To discretize the problem we use P1-bubble/P1 elements. Properties of discrete models in dependence on the discretization parameter are analysed and convergence results are established. In the second part of the paper we briefly describe the duality approach used in computations and present results of a model example.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics and Mechanics of Solids
ISSN
1081-2865
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
294-307
UT code for WoS article
000429895300004
EID of the result in the Scopus database
2-s2.0-85044166501