All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Graph-indexed random walks on pseudotrees

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386849" target="_blank" >RIV/00216208:11320/18:10386849 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.endm.2018.06.045" target="_blank" >https://doi.org/10.1016/j.endm.2018.06.045</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.endm.2018.06.045" target="_blank" >10.1016/j.endm.2018.06.045</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Graph-indexed random walks on pseudotrees

  • Original language description

    We investigate the average range of 1-Lipschitz mappings (graph-indexed random walks) of a given connected graph. This parameter originated in statistical physics, it is connected to the study of random graph homomorphisms and generalizes standard random walks on Z. Our first goal is to prove a closed-form formula for this parameter for cycle graphs. The second one is to prove two conjectures, the first by Benjamini, Häggström and Mossel and the second by Loebl, Nešetřil and Reed, for unicyclic graphs. This extends a result of Wu, Xu, and Zhu [5] who proved the aforementioned conjectures for trees.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electronic Notes in Discrete Mathematics

  • ISSN

    1571-0653

  • e-ISSN

  • Volume of the periodical

    68

  • Issue of the periodical within the volume

    July 2018

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    6

  • Pages from-to

    263-268

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85049917774