Graph-indexed random walks on pseudotrees
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386849" target="_blank" >RIV/00216208:11320/18:10386849 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.endm.2018.06.045" target="_blank" >https://doi.org/10.1016/j.endm.2018.06.045</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.endm.2018.06.045" target="_blank" >10.1016/j.endm.2018.06.045</a>
Alternative languages
Result language
angličtina
Original language name
Graph-indexed random walks on pseudotrees
Original language description
We investigate the average range of 1-Lipschitz mappings (graph-indexed random walks) of a given connected graph. This parameter originated in statistical physics, it is connected to the study of random graph homomorphisms and generalizes standard random walks on Z. Our first goal is to prove a closed-form formula for this parameter for cycle graphs. The second one is to prove two conjectures, the first by Benjamini, Häggström and Mossel and the second by Loebl, Nešetřil and Reed, for unicyclic graphs. This extends a result of Wu, Xu, and Zhu [5] who proved the aforementioned conjectures for trees.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Notes in Discrete Mathematics
ISSN
1571-0653
e-ISSN
—
Volume of the periodical
68
Issue of the periodical within the volume
July 2018
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
6
Pages from-to
263-268
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85049917774