The Other Closure and Complete Sublocales
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386934" target="_blank" >RIV/00216208:11320/18:10386934 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s10485-018-9516-4" target="_blank" >https://doi.org/10.1007/s10485-018-9516-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10485-018-9516-4" target="_blank" >10.1007/s10485-018-9516-4</a>
Alternative languages
Result language
angličtina
Original language name
The Other Closure and Complete Sublocales
Original language description
Sublocales of a locale (frame, generalized space) can be equivalently represented by frame congruences. In this paper we discuss, a.o., the sublocales corresponding to complete congruences, that is, to frame congruences which are closed under arbitrary meets, and present a "geometric" condition for a sublocale to be complete. To this end we make use of a certain closure operator on the coframe of sublocales that allows not only to formulate the condition but also to analyze certain weak separation properties akin to subfitness or T-1. Trivially, every open sublocale is complete. We specify a very wide class of frames, containing all the subfit ones, where there are no others. In consequence, e.g., in this class of frames, complete homomorphisms are automatically Heyting.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Categorical Structures
ISSN
0927-2852
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
5
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
16
Pages from-to
891-906
UT code for WoS article
000445266900006
EID of the result in the Scopus database
2-s2.0-85041903724