A Tutte Polynomial for Maps
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10387199" target="_blank" >RIV/00216208:11320/18:10387199 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1017/S0963548318000081" target="_blank" >https://doi.org/10.1017/S0963548318000081</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0963548318000081" target="_blank" >10.1017/S0963548318000081</a>
Alternative languages
Result language
angličtina
Original language name
A Tutte Polynomial for Maps
Original language description
We follow the example of Tutte in his construction of the dichromate of a graph (i.e. the Tutte polynomial) as a unification of the chromatic polynomial and the flow polynomial in order to construct a new polynomial invariant of maps (graphs embedded in orientable surfaces). We call this the surface Tutte polynomial. The surface Tutte polynomial of a map contains the Las Vergnas polynomial, the Bollobas-Riordan polynomial and the Krushkal polynomial as specializations. By construction, the surface Tutte polynomial includes among its evaluations the number of local tensions and local flows taking values in any given finite group. Other evaluations include the number of quasi-forests.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Combinatorics, Probability & Computing
ISSN
0963-5483
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
6
Country of publishing house
GB - UNITED KINGDOM
Number of pages
33
Pages from-to
913-945
UT code for WoS article
000449325100003
EID of the result in the Scopus database
2-s2.0-85045276314