All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The canonical Tutte polynomial for signed graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10404768" target="_blank" >RIV/00216208:11320/19:10404768 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jGfJCQXusX" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jGfJCQXusX</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    The canonical Tutte polynomial for signed graphs

  • Original language description

    We construct a new polynomial invariant for signed graphs, the trivariate Tutte polynomial, which contains among its evaluations the number of proper colorings and the number of nowhere-zero flows. In this, it parallels the Tutte polynomial of a graph, which contains the chromatic polynomial and flow polynomial as specializations. While the Tutte polynomial of a graph is equivalently defined as the dichromatic polynomial or Whitney rank polynomial, the dichromatic polynomial of a signed graph (defined more widely for biased graphs by Zaslavsky) does not, by contrast, give the number of nowhere-zero flows as an evaluation in general. The trivariate Tutte polynomial contains Zaslavsky&apos;s dichromatic polynomial as a specialization. Furthermore, the trivariate Tutte polynomial gives as an evaluation the number of proper colorings of a signed graph under a more general sense of signed graph coloring in which colors are elements of an arbitrary finite set equipped with an involution.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-21082S" target="_blank" >GA19-21082S: Graphs and their algebraic properties</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Mathematica Universitatis Comenianae

  • ISSN

    0231-6986

  • e-ISSN

  • Volume of the periodical

    88

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    SK - SLOVAKIA

  • Number of pages

    6

  • Pages from-to

    749-754

  • UT code for WoS article

    000484349000061

  • EID of the result in the Scopus database