All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cover time and mixing time of random walks on dynamic graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10387271" target="_blank" >RIV/00216208:11320/18:10387271 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1002/rsa.20752" target="_blank" >https://doi.org/10.1002/rsa.20752</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/rsa.20752" target="_blank" >10.1002/rsa.20752</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cover time and mixing time of random walks on dynamic graphs

  • Original language description

    The application of simple random walks on graphs is a powerful tool that is useful in many algorithmic settings such as network exploration, sampling, information spreading, and distributed computing. This is due to the reliance of a simple random walk on only local data, its negligible memory requirements, and its distributed nature. It is well known that for static graphs the cover time, that is, the expected time to visit every node of the graph, and the mixing time, that is, the time to sample a node according to the stationary distribution, are at most polynomial relative to the size of the graph. Motivated by real world networks, such as peer-to-peer and wireless networks, the conference version of this paper was the first to study random walks on arbitrary dynamic networks. We study the most general model in which an oblivious adversary is permitted to change the graph after every step of the random walk. In contrast to static graphs, and somewhat counter-intuitively, we show that there are adversary strategies that force the expected cover time and the mixing time of the simple random walk on dynamic graphs to be exponentially long, even when at each time step the network is well connected and rapidly mixing. To resolve this, we propose a simple strategy, the lazy random walk, which guarantees, under minor conditions, polynomial cover time and polynomial mixing time regardless of the changes made by the adversary.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Random Structures and Algorithms

  • ISSN

    1042-9832

  • e-ISSN

  • Volume of the periodical

    52

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    21

  • Pages from-to

    576-596

  • UT code for WoS article

    000438011100003

  • EID of the result in the Scopus database

    2-s2.0-85039167104