All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Many random walks are faster than one

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F08%3A00318535" target="_blank" >RIV/67985840:_____/08:00318535 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Many random walks are faster than one

  • Original language description

    We pose a new and intriguing question motivated by distributed computing regarding random walks on graphs: How long does it take for several independent random walks, starting from the same vertex, to cover an entire graph? We study the cover time-the expected time required to visit every node in a graph at least once-and we show that for a large collection of interesting graphs, running many random walks in parallel yields a speed-up in the cover time that is linear in the number of parallel walks. Wedemonstrate that an exponential speed-up is sometimes possible, but that some natural graphs allow only a logarithmic speed-up. A problem related to ours (in which the walks start from some probabilistic distribution on vertices) was previously studied in the context of space efficient algorithms for undirected s-t-connectivity and our results yield, in certain cases, an improvement upon some of the earlier bounds.

  • Czech name

    Mnoho náhodných procházek je rychlejších než jedna

  • Czech description

    Článek se zabývá otázkou doby pokrytí grafu několika nezávislými souběžnými náhodnými procházkami.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GP201%2F07%2FP276" target="_blank" >GP201/07/P276: Computational and communication complexity of Boolean functions, and derandomization</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 20th Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA 2008

  • ISBN

    978-1-59593-973-9

  • ISSN

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

  • Publisher name

    ACM

  • Place of publication

    Mnichov

  • Event location

    Mnichov

  • Event date

    Jun 14, 2008

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article