All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximating Edit Distance Within Constant Factor in Truly Sub-Quadratic Time

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10387280" target="_blank" >RIV/00216208:11320/18:10387280 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/FOCS.2018.00096" target="_blank" >https://doi.org/10.1109/FOCS.2018.00096</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/FOCS.2018.00096" target="_blank" >10.1109/FOCS.2018.00096</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximating Edit Distance Within Constant Factor in Truly Sub-Quadratic Time

  • Original language description

    Edit distance is a measure of similarity of two strings based on the minimum number of character insertions, deletions, and substitutions required to transform one string into the other. The edit distance can be computed exactly using a dynamic programming algorithm that runs in quadratic time. Andoni, Krauthgamer and Onak (2010) gave a nearly linear time algorithm that approximates edit distance within approximation factor poly(log n). In this paper, we provide an algorithm with running time (O) over tilde (n(2-2/7)) that approximates the edit distance within a constant factor.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2018 IEEE 59TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS)

  • ISBN

    978-1-5386-4230-6

  • ISSN

    0272-5428

  • e-ISSN

    neuvedeno

  • Number of pages

    12

  • Pages from-to

    979-990

  • Publisher name

    IEEE COMPUTER SOC

  • Place of publication

    LOS ALAMITOS

  • Event location

    Paris

  • Event date

    Oct 7, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000455014500087