Approximating Edit Distance Within Constant Factor in Truly Sub-quadratic Time
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422308" target="_blank" >RIV/00216208:11320/20:10422308 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=wrre.me35f" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=wrre.me35f</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3422823" target="_blank" >10.1145/3422823</a>
Alternative languages
Result language
angličtina
Original language name
Approximating Edit Distance Within Constant Factor in Truly Sub-quadratic Time
Original language description
Edit distance is a measure of similarity of two strings based on the minimum number of character insertions, deletions, and substitutions required to transform one string into the other. The edit distance can be computed exactly using a dynamic programming algorithm that runs in quadratic time. Andoni, Krauthgamer, and Onak (2010) gave a nearly linear time algorithm that approximates edit distance within approximation factor poly(log n). In this article, we provide an algorithm with running time (O) over tildeO(n(2-2/7)) that approximates the edit distance within a constant factor.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX19-27871X" target="_blank" >GX19-27871X: Efficient approximation algorithms and circuit complexity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of the ACM
ISSN
0004-5411
e-ISSN
—
Volume of the periodical
67
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
36
UT code for WoS article
000595522200005
EID of the result in the Scopus database
2-s2.0-85097045603