Multisymplectic 3-forms on 7-dimensional manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10387918" target="_blank" >RIV/00216208:11320/18:10387918 - isvavai.cz</a>
Result on the web
<a href="https://arxiv.org/pdf/1110.5605.pdf" target="_blank" >https://arxiv.org/pdf/1110.5605.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.difgeo.2018.01.004" target="_blank" >10.1016/j.difgeo.2018.01.004</a>
Alternative languages
Result language
angličtina
Original language name
Multisymplectic 3-forms on 7-dimensional manifolds
Original language description
A 3-form on 7 dimensional vector space is called multisymplectic if it satisfies some natural non-degeneracy requirement. It is well known that there are 8 orbits (or types) of multisymplectic 3-forms on under the canonical action of the general linear group and that two types are open. This leads to 8 types of global multisymplectic 3-forms on 7-dimensional manifolds without boundary. The existence of a global multisymplectic 3-form of a fixed type is a classical problem in differential topology which is equivalent to the existence of a certain G-structure. The open types are the most interesting cases as they are equivalent to G_2-structure. The existence of these two structures is a well known and solved problem. In this article is solved (under some convenient assumptions) the problem of the existence of multisymplectic 3-forms of the remaining types
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Differential Geometry and its Application
ISSN
0926-2245
e-ISSN
—
Volume of the periodical
2018[58]
Issue of the periodical within the volume
6
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
120-140
UT code for WoS article
000430147200007
EID of the result in the Scopus database
2-s2.0-85044625827