One kind of multisymplectic structures on 6-manifolds.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F01%3A05025143" target="_blank" >RIV/67985840:_____/01:05025143 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
One kind of multisymplectic structures on 6-manifolds.
Original language description
It is well known that in dimension 6 there exist exactly three multisymplectic 3-forms. Consequently, on a 6-manifold there are three kinds of multisymplectic structures. One of these structures is investigated in the paper. It is considered as a G-structure, and the relevant group G is determined, and various properties of the structure are determined. There are described necessary and sufficient conditions for the integrability of the structure and one interesting example is presented.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F99%2F0675" target="_blank" >GA201/99/0675: Geometric and topological structures in mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2001
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Steps in Differential Geometry, Proceedings of the Colloquium on Differential Geometry.
ISBN
—
ISSN
—
e-ISSN
—
Number of pages
17
Pages from-to
375-391
Publisher name
Institute of Mathematics and Informatics, University of Debrecen
Place of publication
Debrecen
Event location
Debrecen [HU]
Event date
Jun 25, 2000
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—