All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Prevalent lightning sferics at 600 megahertz near Jupiter's poles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10389427" target="_blank" >RIV/00216208:11320/18:10389427 - isvavai.cz</a>

  • Alternative codes found

    RIV/68378289:_____/18:00490137

  • Result on the web

    <a href="https://doi.org/10.1038/s41586-018-0156-5" target="_blank" >https://doi.org/10.1038/s41586-018-0156-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41586-018-0156-5" target="_blank" >10.1038/s41586-018-0156-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Prevalent lightning sferics at 600 megahertz near Jupiter's poles

  • Original language description

    Lightning has been detected on Jupiter by all visiting spacecraft through night-side optical imaging and whistler (lightning-generated radio waves) signatures(1-6). Jovian lightning is thought to be generated in the mixed-phase (liquid-ice) region of convective water clouds through a charge-separation process between condensed liquid water and water-ice particles, similar to that of terrestrial (cloud-to-cloud) lightning(7-9). Unlike terrestrial lightning, which emits broadly over the radio spectrum up to gigahertz frequencies(10,11),lightning on Jupiter has been detected only at kilohertz frequencies, despite a search for signals in the megahertz range(12). Strong ionospheric attenuation or a lightning discharge much slower than that on Earth have been suggested as possible explanations for this discrepancy(13,14). Here we report observations of Jovian lightning sferics (broadband electromagnetic impulses) at 600 megahertz from the Microwave Radiometer(15) onboard the Juno spacecraft. These detections imply that Jovian lightning discharges are not distinct from terrestrial lightning, as previously thought. In the first eight orbits of Juno, we detected 377 lightning sferics from pole to pole. We found lightning to be prevalent in the polar regions, absent near the equator, and most frequent in the northern hemisphere, at latitudes higher than 40 degrees north. Because the distribution of lightning is a proxy for moist convective activity, which is thought to be an important source of outward energy transport from the interior of the planet(16,17,) increased convection towards the poles could indicate an outward internal heat flux that is preferentially weighted towards the poles(9,16,18). The distribution of moist convection is important for understanding the composition, general circulation and energy transport on Jupiter.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/LTAUSA17070" target="_blank" >LTAUSA17070: Electromagnetic waves in planetary ionospheres and magnetospheres</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nature

  • ISSN

    0028-0836

  • e-ISSN

  • Volume of the periodical

    558

  • Issue of the periodical within the volume

    7708

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

    87-90

  • UT code for WoS article

    000434273300041

  • EID of the result in the Scopus database

    2-s2.0-85048238051