All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Jupiter Lightning-Induced Whistler and Sferic Events With Waves and MWR During Juno Perijoves

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10389444" target="_blank" >RIV/00216208:11320/18:10389444 - isvavai.cz</a>

  • Alternative codes found

    RIV/68378289:_____/18:00491732

  • Result on the web

    <a href="https://doi.org/10.1029/2018GL078864" target="_blank" >https://doi.org/10.1029/2018GL078864</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1029/2018GL078864" target="_blank" >10.1029/2018GL078864</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Jupiter Lightning-Induced Whistler and Sferic Events With Waves and MWR During Juno Perijoves

  • Original language description

    During the Juno perijove explorations from 27 August 2016 through 1 September 2017, strong electromagnetic impulses induced by Jupiter lightning were detected by the Microwave Radiometer (MWR) instrument in the form of 600-MHz sferics and recorded by the Waves instrument in the form of Jovian low-dispersion whistlers discovered in waveform snapshots below 20 kHz. We found 71 overlapping events including sferics, while Waves waveforms were available. Eleven of these also included whistler detections by Waves. By measuring the separation distances between the MWR boresight and the whistler exit point, we estimated the distance whistlers propagate below the ionosphere before exiting to the magnetosphere, called the coupling distance, to be typically one to several thousand of kilometers with a possibility of no subionospheric propagation, which gives a new constraint on the atmospheric whistler propagation. Plain Language Summary Lightning at Jupiter produces a strong electromagnetic impulse, which can escape the Jovian atmosphere and enter the inner magnetosphere. Among the lightning, microwave-frequency sferics come from lightning spots, and audio-frequency whistlers propagate away from the spots below the ionosphere. If certain plasma conditions are met, these whistlers can leak into the magnetosphere. Estimates of whistler propagation distances at the planet have not been previously performed. Since the arrival at Jupiter on 5 July 2016, the Juno spacecraft has provided the opportunity to monitor the two kinds of lightning activity with two onboard instruments during its closest approach to Jupiter. This opportunity happens every 53.6 day in the eccentric, polar orbit of Juno. Using data collected during Juno&apos;s closest approaches to Jupiter, the whistler propagation distance was estimated to be approximately one to several thousand kilometers, which may be comparable to the terrestrial equivalent. This new approach provides the benefit of understanding multidimensional structures of lightning at Jupiter.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/LTAUSA17070" target="_blank" >LTAUSA17070: Electromagnetic waves in planetary ionospheres and magnetospheres</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Geophysical Research Letters

  • ISSN

    0094-8276

  • e-ISSN

  • Volume of the periodical

    45

  • Issue of the periodical within the volume

    15

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    7268-7276

  • UT code for WoS article

    000443129500004

  • EID of the result in the Scopus database

    2-s2.0-85052572071