Potential estimates for the p-Laplace system with data in divergence form
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10390840" target="_blank" >RIV/00216208:11320/18:10390840 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jde.2018.02.038" target="_blank" >https://doi.org/10.1016/j.jde.2018.02.038</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2018.02.038" target="_blank" >10.1016/j.jde.2018.02.038</a>
Alternative languages
Result language
angličtina
Original language name
Potential estimates for the p-Laplace system with data in divergence form
Original language description
A pointwise bound for local weak solutions to the p-Laplace system is established in terms of data on the right-hand side in divergence form. The relevant bound involves a Havin-Maz'ya-Wolff potential of the datum, and is a counterpart for data in divergence form of a classical result of [25], recently extended to systems in [28]. A local bound for oscillations is also provided. These results allow for a unified approach to regularity estimates for broad classes of norms, including Banach function norms (e.g. Lebesgue, Lorentz and Orlicz norms), and norms depending on the oscillation of functions (e.g. Holder, BMO and, more generally, Campanato type norms). In particular, new regularity properties are exhibited, and well-known results are easily recovered.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LL1202" target="_blank" >LL1202: Implicitly constituted material models: from theory through model reduction to efficient numerical methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
265
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
478-499
UT code for WoS article
000430281500015
EID of the result in the Scopus database
2-s2.0-85042863329