Pointwise Calderon-Zygmund gradient estimates for the p-Laplace system
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10390843" target="_blank" >RIV/00216208:11320/18:10390843 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.matpur.2017.07.011" target="_blank" >https://doi.org/10.1016/j.matpur.2017.07.011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.matpur.2017.07.011" target="_blank" >10.1016/j.matpur.2017.07.011</a>
Alternative languages
Result language
angličtina
Original language name
Pointwise Calderon-Zygmund gradient estimates for the p-Laplace system
Original language description
Pointwise estimates for the gradient of solutions to the p-Laplace system with righthand side in divergence form are established. Their formulation involves the sharp maximal operator, whose properties enable us to develop a nonlinear counterpart of the classical Calderon-Zygmund theory for the Laplacian. As a consequence, a flexible, comprehensive approach to gradient bounds for the p-Laplace system for a broad class of norms is derived. The relevant gradient bounds are just reduced to norm inequalities for a classical operator of harmonic analysis. In particular, new gradient estimates are exhibited which augment the available literature in the elliptic regularity theory.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal des Mathematiques Pures et Appliquees
ISSN
0021-7824
e-ISSN
—
Volume of the periodical
2018
Issue of the periodical within the volume
114
Country of publishing house
FR - FRANCE
Number of pages
45
Pages from-to
146-190
UT code for WoS article
000433654500006
EID of the result in the Scopus database
2-s2.0-85028335939