Regularity for parabolic systems of Uhlenbeck type with Orlicz growth
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10408328" target="_blank" >RIV/00216208:11320/19:10408328 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RdTi__imNC" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RdTi__imNC</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2018.10.055" target="_blank" >10.1016/j.jmaa.2018.10.055</a>
Alternative languages
Result language
angličtina
Original language name
Regularity for parabolic systems of Uhlenbeck type with Orlicz growth
Original language description
We study the local regularity of p-caloric functions or more generally of phi-caloric functions. In particular, we study local solutions of non-linear parabolic systems with homogeneous right hand side, where the leading terms have Uhlenbeck structure of Orlicz type. This paper closes the gap of [23] where Liebermann proved that if the gradient of a solution is bounded, it is Holder continuous. The crucial step is a novel local estimates for the gradient of the solutions, which generalize and improve the pioneering estimates of DiBenedetto and Friedman [12,10] for the p-Laplace heat equation. (C) 2018 Published by Elsevier Inc.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LL1202" target="_blank" >LL1202: Implicitly constituted material models: from theory through model reduction to efficient numerical methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
472
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
46-60
UT code for WoS article
000456896000004
EID of the result in the Scopus database
2-s2.0-85057864071