L-q theory for a generalized Stokes System
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10191218" target="_blank" >RIV/00216208:11320/13:10191218 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00229-012-0574-x" target="_blank" >http://dx.doi.org/10.1007/s00229-012-0574-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00229-012-0574-x" target="_blank" >10.1007/s00229-012-0574-x</a>
Alternative languages
Result language
angličtina
Original language name
L-q theory for a generalized Stokes System
Original language description
Regularity properties of solutions to the stationary generalized Stokes system are studied. The extra stress tensor is assumed to have a growth given by some N-function, which includes the situation of p-growth. We show results about differentiability ofweak solutions. As a consequence we obtain the gradient L (q) estimates for the problem. These estimates are applied to the stationary generalized Navier Stokes equations.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Manuscripta Mathematica
ISSN
0025-2611
e-ISSN
—
Volume of the periodical
141
Issue of the periodical within the volume
1-2
Country of publishing house
DE - GERMANY
Number of pages
29
Pages from-to
333-361
UT code for WoS article
000317846300016
EID of the result in the Scopus database
—