Stationary solutions in thermodynamics of stochastically forced fluids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00562773" target="_blank" >RIV/67985840:_____/22:00562773 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00208-021-02300-9" target="_blank" >https://doi.org/10.1007/s00208-021-02300-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00208-021-02300-9" target="_blank" >10.1007/s00208-021-02300-9</a>
Alternative languages
Result language
angličtina
Original language name
Stationary solutions in thermodynamics of stochastically forced fluids
Original language description
We study the full Navier–Stokes–Fourier system governing the motion of a general viscous, heat-conducting, and compressible fluid subject to stochastic perturbation. The system is supplemented with non-homogeneous Neumann boundary conditions for the temperature and hence energetically open. We show that, in contrast with the energetically closed system, there exists a stationary solution. Our approach is based on new global-in-time estimates which rely on the non-homogeneous boundary conditions combined with estimates for the pressure.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA21-02411S" target="_blank" >GA21-02411S: Solving ill posed problems in the dynamics of compressible fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Annalen
ISSN
0025-5831
e-ISSN
1432-1807
Volume of the periodical
384
Issue of the periodical within the volume
3-4
Country of publishing house
DE - GERMANY
Number of pages
29
Pages from-to
1127-1155
UT code for WoS article
000720610600001
EID of the result in the Scopus database
2-s2.0-85119485657