Global Bifurcation for a Reaction-Diffusion System with Inclusions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F09%3A00331689" target="_blank" >RIV/67985840:_____/09:00331689 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Global Bifurcation for a Reaction-Diffusion System with Inclusions
Original language description
We consider a reaction-diffusion system exhibiting diffusion driven instability if supplemented by Dirichlet-Neumann boundary conditions. We impose unilateral conditions given by inclusions on this system and prove that global bifurcation of spatially non-homogeneous stationary solutions occured in the domain of parameters where bifurcation is excluded for the original mixed boundary value problem. Inclusions can be considered in one of the equations itself as well as in boundary conditions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190506" target="_blank" >IAA100190506: Bifurcations and dependence on parameters for variational inequalitites with interpretations in natural sciences</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Zeitschrift für Analysis und Ihre Anwendungen
ISSN
0232-2064
e-ISSN
—
Volume of the periodical
29
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
37
Pages from-to
—
UT code for WoS article
000274276400001
EID of the result in the Scopus database
—