Homogenization of the compressible Navier-Stokes equations in domains with very tiny holes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10390841" target="_blank" >RIV/00216208:11320/18:10390841 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jde.2018.04.007" target="_blank" >https://doi.org/10.1016/j.jde.2018.04.007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2018.04.007" target="_blank" >10.1016/j.jde.2018.04.007</a>
Alternative languages
Result language
angličtina
Original language name
Homogenization of the compressible Navier-Stokes equations in domains with very tiny holes
Original language description
We consider the homogenization problem of the compressible Navier-Stokes equations in a bounded three dimensional domain perforated with very tiny holes. As the number of holes increases to infinity, we show that, if the size of the holes is small enough, the homogenized equations are the same as the compressible Navier-Stokes equations in the homogeneous domain-domain without holes. This coincides with the previous studies for the Stokes equations and the stationary Navier-Stokes equations. It is the first result of this kind in the instationary barotropic compressible setting. The main technical novelty is the study of the Bogovskii operator in non-Lipschitz domains.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LL1202" target="_blank" >LL1202: Implicitly constituted material models: from theory through model reduction to efficient numerical methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
265
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
36
Pages from-to
1371-1406
UT code for WoS article
000432941300010
EID of the result in the Scopus database
2-s2.0-85045713983