Homogenization of Stationary Navier-Stokes Equations in Domains with Tiny Holes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10319167" target="_blank" >RIV/00216208:11320/15:10319167 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00021-015-0200-2" target="_blank" >http://dx.doi.org/10.1007/s00021-015-0200-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-015-0200-2" target="_blank" >10.1007/s00021-015-0200-2</a>
Alternative languages
Result language
angličtina
Original language name
Homogenization of Stationary Navier-Stokes Equations in Domains with Tiny Holes
Original language description
We consider the homogenization problem for the stationary compressible Navier-Stokes equations describing a steady flow of a compressible Newtonian fluid in a bounded three dimensional domain. We focus on the case where the domain is perforated with verytiny holes for which the diameters are much smaller than their mutual distances. We show that the homogenization process does not change the motion of the fluids: in the asymptotic limit, we obtain again the same system of equations. This coincides withsimilar results for the stationary Stokes and stationary incompressible Navier-Stokes system.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LL1202" target="_blank" >LL1202: Implicitly constituted material models: from theory through model reduction to efficient numerical methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
—
Volume of the periodical
17
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
12
Pages from-to
381-392
UT code for WoS article
000357576700009
EID of the result in the Scopus database
2-s2.0-84929071010