Homogenization problems for the compressible Navier-Stokes system in 2D perforated domains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00559097" target="_blank" >RIV/67985840:_____/22:00559097 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/mma.8283" target="_blank" >https://doi.org/10.1002/mma.8283</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mma.8283" target="_blank" >10.1002/mma.8283</a>
Alternative languages
Result language
angličtina
Original language name
Homogenization problems for the compressible Navier-Stokes system in 2D perforated domains
Original language description
In this paper, we study the homogenization problems for stationary compressible Navier–Stokes system in a bounded 2D domain, where the domain is perforated with very tiny holes (or obstacles) whose diameters are much smaller than their mutual distances. We obtain that the process of homogenization doesn't change the motion of the fluids. From another point of view, we obtain the same system of equations in asymptotic limit. It is the first result of homogenization problem in 2D compressible case.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Methods in the Applied Sciences
ISSN
0170-4214
e-ISSN
1099-1476
Volume of the periodical
45
Issue of the periodical within the volume
12
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
7859-7873
UT code for WoS article
000781948000001
EID of the result in the Scopus database
2-s2.0-85128594255