All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

PROPERADS AND HOMOLOGICAL DIFFERENTIAL OPERATORS RELATED TO SURFACES

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10396768" target="_blank" >RIV/00216208:11320/18:10396768 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5AoH-DOxx-" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5AoH-DOxx-</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5817/AM2018-5-299" target="_blank" >10.5817/AM2018-5-299</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    PROPERADS AND HOMOLOGICAL DIFFERENTIAL OPERATORS RELATED TO SURFACES

  • Original language description

    We give a biased definition of a properad and an explicit example of a closed Frobenius properad. We recall the construction of the cobar complex and algebra over it. We give an equivalent description of the algebra in terms of Barannikov&apos;s theory which is parallel to Barannikov&apos;s theory of modular operads. We show that the algebra structure can be encoded as homological differential operator. Example of open Frobenius properad is mentioned along its specific properties.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Archivum Mathematicum [online]

  • ISSN

    1212-5059

  • e-ISSN

  • Volume of the periodical

    54

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    14

  • Pages from-to

    299-312

  • UT code for WoS article

    000462184000005

  • EID of the result in the Scopus database

    2-s2.0-85060143018