Deforming lie algebras to frobenius integrable nonautonomous hamiltonian systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F21%3AA0000089" target="_blank" >RIV/47813059:19610/21:A0000089 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0034487721000288" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0034487721000288</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/S0034-4877(21)00028-8" target="_blank" >10.1016/S0034-4877(21)00028-8</a>
Alternative languages
Result language
angličtina
Original language name
Deforming lie algebras to frobenius integrable nonautonomous hamiltonian systems
Original language description
Motivated by the theory of Painlevé equations and associated hierarchies, we study nonautonomous Hamiltonian systems that are Frobenius integrable. We establish sufficient conditions under which a given finite-dimensional Lie algebra of Hamiltonian vector fields can be deformed into a time-dependent Lie algebra of Frobenius integrable vector fields spanning the same distribution as the original algebra. The results are applied to quasi-Stäckel systems from [14].
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Reports on Mathematical Physics
ISSN
0034-4877
e-ISSN
1879-0674
Volume of the periodical
87
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
249-263
UT code for WoS article
000652736500006
EID of the result in the Scopus database
2-s2.0-85105749398