Universal quadratic forms and indecomposables over biquadratic fields
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10377932" target="_blank" >RIV/00216208:11320/19:10377932 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/19:10400369
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_R5RUoX.82" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_R5RUoX.82</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.201800109" target="_blank" >10.1002/mana.201800109</a>
Alternative languages
Result language
angličtina
Original language name
Universal quadratic forms and indecomposables over biquadratic fields
Original language description
The aim of this article is to study (additively) indecomposable algebraic integers $mathcal O_K$ of biquadratic number fields $K$ and universal totally positive quadratic forms with coefficients in $mathcal O_K$. There are given sufficient conditions for an indecomposable element of a quadratic subfield to remain indecomposable in the biquadratic number field $K$. Furthermore, estimates are proven which enable algorithmization of the method of escalation over $K$. These are used to prove, over two particular biquadratic number fields $BQ 23$ and $BQ{6}{19}$, a lower bound on the number of variables of a universal quadratic forms.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ17-04703Y" target="_blank" >GJ17-04703Y: Quadratic forms and numeration systems over number fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
—
Volume of the periodical
292
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
16
Pages from-to
540-555
UT code for WoS article
000462658600005
EID of the result in the Scopus database
2-s2.0-85054921017