All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Universal quadratic forms and indecomposables over biquadratic fields

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10377932" target="_blank" >RIV/00216208:11320/19:10377932 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/19:10400369

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_R5RUoX.82" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_R5RUoX.82</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mana.201800109" target="_blank" >10.1002/mana.201800109</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Universal quadratic forms and indecomposables over biquadratic fields

  • Original language description

    The aim of this article is to study (additively) indecomposable algebraic integers $mathcal O_K$ of biquadratic number fields $K$ and universal totally positive quadratic forms with coefficients in $mathcal O_K$. There are given sufficient conditions for an indecomposable element of a quadratic subfield to remain indecomposable in the biquadratic number field $K$. Furthermore, estimates are proven which enable algorithmization of the method of escalation over $K$. These are used to prove, over two particular biquadratic number fields $BQ 23$ and $BQ{6}{19}$, a lower bound on the number of variables of a universal quadratic forms.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ17-04703Y" target="_blank" >GJ17-04703Y: Quadratic forms and numeration systems over number fields</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Nachrichten

  • ISSN

    0025-584X

  • e-ISSN

  • Volume of the periodical

    292

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    16

  • Pages from-to

    540-555

  • UT code for WoS article

    000462658600005

  • EID of the result in the Scopus database

    2-s2.0-85054921017