There are no universal ternary quadratic forms over biquadratic fields
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10414980" target="_blank" >RIV/00216208:11320/20:10414980 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=huvhD_fM1c" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=huvhD_fM1c</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S001309152000022X" target="_blank" >10.1017/S001309152000022X</a>
Alternative languages
Result language
angličtina
Original language name
There are no universal ternary quadratic forms over biquadratic fields
Original language description
We study totally positive definite quadratic forms over the ring of integers O_K of a totally real biquadratic field K= Q(sqrt(m), sqrt(s)). We restrict our attention to classical forms (i.e., those with all non-diagonal coefficients in 2O_K) and prove that no such forms in three variables are universal (i.e., represent all totally positive elements of O_K). This provides further evidence towards Kitaoka's conjecture that there are only finitely many number fields over which such forms exist. One of our main tools are additively indecomposable elements of O_K; we prove several new results about their properties.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ17-04703Y" target="_blank" >GJ17-04703Y: Quadratic forms and numeration systems over number fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the Edinburgh Mathematical Society
ISSN
0013-0915
e-ISSN
—
Volume of the periodical
63
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
52
Pages from-to
861-912
UT code for WoS article
000577422000014
EID of the result in the Scopus database
2-s2.0-85092742947