On Kitaoka's conjecture and lifting problem for universal quadratic forms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10472017" target="_blank" >RIV/00216208:11320/23:10472017 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gr-du982I5" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gr-du982I5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/blms.12762" target="_blank" >10.1112/blms.12762</a>
Alternative languages
Result language
angličtina
Original language name
On Kitaoka's conjecture and lifting problem for universal quadratic forms
Original language description
For a totally positive definite quadratic form over the ring of integers of a totally real number field K, we show that there are only finitely many totally real field extensions of K of a fixed degree over which the form is universal (namely, those that have a short basis in a suitable sense). Along the way we give a general construction of a universal form of rank bounded by D(logD)d-1, where d is the degree of K over Q and D is its discriminant. Furthermore, for any fixed degree we prove (weak) Kitaoka's conjecture that there are only finitely many totally real number fields with a universal ternary quadratic form.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GM21-00420M" target="_blank" >GM21-00420M: Universal Quadratic Forms and Class Numbers</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bulletin of the London Mathematical Society
ISSN
0024-6093
e-ISSN
1469-2120
Volume of the periodical
55
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
854-864
UT code for WoS article
000893525600001
EID of the result in the Scopus database
2-s2.0-85144767441